农场主的黑科技.

Dubbo源码跟踪实录-集群容错:负载均衡LoadBalance

字数统计: 4.9k阅读时长: 30 min
2019/04/21 Share

Dubbo 提供了4种负载均衡实现,分别是

  • 基于权重随机算法的 RandomLoadBalance
  • 基于最少活跃调用数算法的 LeastActiveLoadBalance
  • 基于 hash 一致性的 ConsistentHashLoadBalance
  • 基于加权轮询算法的 RoundRobinLoadBalance

以下是Dubbo 2.6.4的代码分析.之后的版本优化了部分代码.

AbstractLoadBalance

所有负载均衡类的父类.首先来看一下负载均衡的入口方法 select,如下:

1
2
3
4
5
6
7
8
9
10
11
//com.alibaba.dubbo.rpc.cluster.loadbalance.AbstractLoadBalance#select
@Override
public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
if (invokers == null || invokers.isEmpty())
return null;
// 如果 invokers 列表中仅有一个 Invoker,直接返回即可,无需进行负载均衡
if (invokers.size() == 1)
return invokers.get(0);
// 调用 doSelect 方法进行负载均衡,该方法为抽象方法,由子类实现
return doSelect(invokers, url, invocation);
}

除此外还封装了一些公共逻辑,比如获取服务提供者权重的逻辑。具体实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
protected int getWeight(Invoker<?> invoker, Invocation invocation) {
// 从 url 中获取权重 weight 配置值
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
if (weight > 0) {
// 获取服务提供者启动时间戳
long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
if (timestamp > 0L) {
// 计算服务提供者运行时长
int uptime = (int) (System.currentTimeMillis() - timestamp);
// 获取服务预热时间,默认为10分钟
int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
// 如果服务运行时间小于预热时间,则重新计算服务权重,即降权
if (uptime > 0 && uptime < warmup) {
// 重新计算服务权重
weight = calculateWarmupWeight(uptime, warmup, weight);
}
}
}
return weight;
}

static int calculateWarmupWeight(int uptime, int warmup, int weight) {
// 计算权重,下面代码逻辑上形似于 (uptime / warmup) * weight。
// 随着服务运行时间 uptime 增大,权重计算值 ww 会慢慢接近配置值 weight
int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
return ww < 1 ? 1 : (ww > weight ? weight : ww);
}

上面的getWeight()用于获取invoker的权重.如果Invoker的服务启动时间未满10分钟.表示该服务还在预热的状态,此时降低它的权重.

RandomLoadBalance

先看一下它的算法思想,简单又容易实现:

RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。比如数字3会落到服务器 A 对应的区间上,此时返回服务器 A 即可。权重越大的机器,在坐标轴上对应的区间范围就越大,因此随机数生成器生成的数字就会有更大的概率落到此区间内。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。比如,经过一万次选择后,服务器 A 被选中的次数大约为5000次,服务器 B 被选中的次数约为3000次,服务器 C 被选中的次数约为2000次。

代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//com.alibaba.dubbo.rpc.cluster.loadbalance.RandomLoadBalance#doSelect
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size();
int totalWeight = 0;
boolean sameWeight = true;
// 下面这个循环有两个作用,第一是计算总权重 totalWeight,
// 第二是检测每个服务提供者的权重是否相同
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
totalWeight += weight;
if (sameWeight && i > 0
&& weight != getWeight(invokers.get(i - 1), invocation)) {
sameWeight = false;
}
}
if (totalWeight > 0 && !sameWeight) {//有必要做基于权重的负载均衡.就是之前的区间算法

int offset = random.nextInt(totalWeight);

for (int i = 0; i < length; i++) {
offset -= getWeight(invokers.get(i), invocation);
if (offset < 0) {
return invokers.get(i);
}
}
}

return invokers.get(random.nextInt(length));//权重都一样,随便取一个
}

当各个Invoker有不同的权重时需要进行基于算法的负载均衡.否则表示没有必要进行基于权重的负载均衡,则随便选一个.

当然 RandomLoadBalance 也存在一定的缺点,当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。这个缺点并不是很严重,多数情况下可以忽略。RandomLoadBalance 是一个简单,高效的负载均衡实现,因此 Dubbo 选择它作为默认实现。

LeastActiveLoadBalance

说白了就是,哪个Invoker最闲就用哪个

每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快,此时这样的服务提供者能够优先获取到新的服务请求、这就是最小活跃数负载均衡算法的基本思想。除了最小活跃数,LeastActiveLoadBalance 在实现上还引入了权重值。所以准确的来说,LeastActiveLoadBalance 是基于加权最小活跃数算法实现的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
//com.alibaba.dubbo.rpc.cluster.loadbalance.LeastActiveLoadBalance#doSelect
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size();
// 最小的活跃数
int leastActive = -1;
// 具有相同“最小活跃数”的服务者提供者(以下用 Invoker 代称)数量
int leastCount = 0;
// leastIndexs 用于记录具有相同“最小活跃数”的 Invoker 在 invokers 列表中的下标信息
int[] leastIndexs = new int[length];
int totalWeight = 0;
// 第一个最小活跃数的 Invoker 权重值,用于与其他具有相同最小活跃数的 Invoker 的权重进行对比,
// 以检测是否“所有具有相同最小活跃数的 Invoker 的权重”均相等
int firstWeight = 0;
boolean sameWeight = true;

// 1. 遍历 invokers 列表,寻找活跃度最小的invoker
for (int i = 0; i < length; i++) {
Invoker<T> invoker = invokers.get(i);
// 获取 Invoker 对应的活跃数
int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
// 获取权重 - ⭐️
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
// 这个Invoker的active比之前的都要小,重新开始
if (leastActive == -1 || active < leastActive) {
// 使用当前活跃数 active 更新最小活跃数 leastActive
leastActive = active;
// 更新 leastCount 为 1
leastCount = 1;
// 记录当前下标值到 leastIndexs 中
leastIndexs[0] = i;
totalWeight = weight;
firstWeight = weight;
sameWeight = true;

// 当前 Invoker 的活跃数 active 与最小活跃数 leastActive 相同
} else if (active == leastActive) {
// 在 leastIndexs 中记录下当前 Invoker 在 invokers 集合中的下标
leastIndexs[leastCount++] = i;
// 累加权重
totalWeight += weight;
// 检测当前 Invoker 的权重与 firstWeight 是否相等,
// 不相等则将 sameWeight 置为 false
if (sameWeight && i > 0
&& weight != firstWeight) {
sameWeight = false;
}
}
}

// 2. 当只有一个 Invoker 具有最小活跃数,此时直接返回该 Invoker 即可
if (leastCount == 1) {
return invokers.get(leastIndexs[0]);
}

// 3. 有多个 Invoker 具有相同的最小活跃数,但它们之间的权重不同
if (!sameWeight && totalWeight > 0) {
// 随机生成一个 [0, totalWeight) 之间的数字
int offsetWeight = random.nextInt(totalWeight);
// 循环让随机数减去具有最小活跃数的 Invoker 的权重值,
// 当 offset 小于等于0时,返回相应的 Invoker
for (int i = 0; i < leastCount; i++) {
int leastIndex = leastIndexs[i];
// 获取权重值,并让随机数减去权重值 - ⭐️
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
if (offsetWeight <= 0) // ❌
return invokers.get(leastIndex);
}
}
// 如果权重相同或权重为0时,随机返回一个 Invoker
return invokers.get(leastIndexs[random.nextInt(leastCount)]);
}

下面简单总结一下以上代码所做的事情,如下:

  1. 遍历 invokers 列表,寻找活跃数最小的 Invoker
  2. 如果只有一个 Invoker 具有最小的活跃数,此时直接返回该 Invoker 即可
  3. 如果有多个 Invoker 具有最小活跃数,且它们的权重不相等,之后的处理方式和 RandomLoadBalance 一致

有标记的两个部分是在之后版本中被修复的部分

1
2
3
> // 获取权重 - ⭐️
> int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
>

比如上面的代码直接从 url 中取权重值,在预热阶段时也不会进行降权处理。应该调用它父类的getWeight()方法.

修复后:

1
2
3
> // afterWarmup 等价于上面的 weight 变量,这样命名是为了强调该变量经过了 warmup 降权处理
> int afterWarmup = getWeight(invoker, invocation);
>

还有一个被标记的部分

1
2
3
4
5
6
7
8
9
> int offsetWeight = random.nextInt(totalWeight);
> for (int i = 0; i < leastCount; i++) {
> int leastIndex = leastIndexs[i];
> // 获取权重值,并让随机数减去权重值 - ⭐️
> offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
> if (offsetWeight <= 0) // ❌
> return invokers.get(leastIndex);
> }
>

这里被修复成了

1
2
> int offsetWeight = random.nextInt(totalWeight) + 1;
>

ConsistentHashLoadBalance

基于hash一致性的算法,官方文档中用了大量的篇幅来解释该算法,Dubbo官方文档-ConsistentHashLoadBalance

.我这里就不贴过来了,如果之前没有接触过的话,可能得多读几遍.

下面开始它的源码分析:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class ConsistentHashLoadBalance extends AbstractLoadBalance {

private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors =
new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
String methodName = RpcUtils.getMethodName(invocation);
String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;

// 获取 invokers 原始的 hashcode
int identityHashCode = System.identityHashCode(invokers);
ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
// 如果 invokers 是一个新的 List 对象,意味着服务提供者数量发生了变化,可能新增也可能减少了。
// 此时 selector.identityHashCode != identityHashCode 条件成立
if (selector == null || selector.identityHashCode != identityHashCode) {
// 创建新的 ConsistentHashSelector
selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, identityHashCode));
selector = (ConsistentHashSelector<T>) selectors.get(key);
}

// 调用 ConsistentHashSelector 的 select 方法选择 Invoker
return selector.select(invocation);
}

private static final class ConsistentHashSelector<T> {...}
}

doSelect()方法主要用于完成一系列前置工作,根据服务方法创建或获取ConsistentHashSelector类型的selector.

最终调用selector的select()方法进行选择.在分析 select 方法之前,我们先来看一下一致性 hash 选择器 ConsistentHashSelector 的初始化过程,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
private static final class ConsistentHashSelector<T> {

// 使用 TreeMap 存储 Invoker 虚拟节点
private final TreeMap<Long, Invoker<T>> virtualInvokers;

private final int replicaNumber;

private final int identityHashCode;

private final int[] argumentIndex;

ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
this.identityHashCode = identityHashCode;
URL url = invokers.get(0).getUrl();
// 获取虚拟节点数,默认为160
this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
// 获取参与 hash 计算的参数下标值,默认对第一个参数进行 hash 运算
String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
argumentIndex = new int[index.length];
for (int i = 0; i < index.length; i++) {
argumentIndex[i] = Integer.parseInt(index[i]);
}
for (Invoker<T> invoker : invokers) {
String address = invoker.getUrl().getAddress();
for (int i = 0; i < replicaNumber / 4; i++) {
// 对 address + i 进行 md5 运算,得到一个长度为16的字节数组
byte[] digest = md5(address + i);
// 对 digest 部分字节进行4次 hash 运算,得到四个不同的 long 型正整数
for (int h = 0; h < 4; h++) {
// h = 0 时,取 digest 中下标为 0 ~ 3 的4个字节进行位运算
// h = 1 时,取 digest 中下标为 4 ~ 7 的4个字节进行位运算
// h = 2, h = 3 时过程同上
long m = hash(digest, h);
// 将 hash 到 invoker 的映射关系存储到 virtualInvokers 中,
// virtualInvokers 需要提供高效的查询操作,因此选用 TreeMap 作为存储结构
virtualInvokers.put(m, invoker);
}
}
}
}
}

刚看到这段代码的时候一脸懵逼.其实就是构建下图的过程:

img

ConsistentHashSelector的核心是一个TreeMap:

1
2
// 使用 TreeMap 存储 Invoker 虚拟节点
private final TreeMap<Long, Invoker<T>> virtualInvokers;

这个TreeMap保存了上图的hash数据结构

上图是一个List<Invoker<T>>构建后的结果.实际上只有Invoker1,2,3的3个有相同服务的Invoker.其他相同颜色的点都是他们的复制出来的”虚拟节点”.至于为什么需要创建那么多的虚拟节点,文档中有解释.

我们经过一系列的算法从3个Invoker生成为160*3的虚拟节点,通过md5算法分散保存到TreeMap中了.

理解一致性hash的构造过程后,开始看它的select()方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public Invoker<T> select(Invocation invocation) {
// 将参数转为 key
String key = toKey(invocation.getArguments());
// 对参数 key 进行 md5 运算
byte[] digest = md5(key);
// 取 digest 数组的前四个字节进行 hash 运算,再将 hash 值传给 selectForKey 方法,
// 寻找合适的 Invoker
return selectForKey(hash(digest, 0));
}

private Invoker<T> selectForKey(long hash) {
// 到 TreeMap 中查找第一个节点值大于或等于当前 hash 的 Invoker
Map.Entry<Long, Invoker<T>> entry = virtualInvokers.tailMap(hash, true).firstEntry();
// 如果 hash 大于 Invoker 在圆环上最大的位置,此时 entry = null,
// 需要将 TreeMap 的头节点赋值给 entry
if (entry == null) {
entry = virtualInvokers.firstEntry();
}
// 返回 Invoker
return entry.getValue();
}

如上,选择的过程相对比较简单了。首先是对参数进行 md5 以及 hash 运算,得到一个 hash 值。然后再拿这个值到 TreeMap 中查找目标 Invoker 即可。

RoundRobinLoadBalance

加权轮询负载均衡,算法介绍:

这里从最简单的轮询开始讲起,所谓轮询是指将请求轮流分配给每台服务器。举个例子,我们有三台服务器 A、B、C。我们将第一个请求分配给服务器 A,第二个请求分配给服务器 B,第三个请求分配给服务器 C,第四个请求再次分配给服务器 A。这个过程就叫做轮询。轮询是一种无状态负载均衡算法,实现简单,适用于每台服务器性能相近的场景下。

但现实情况下,我们并不能保证每台服务器性能均相近。如果我们将等量的请求分配给性能较差的服务器,这显然是不合理的。因此,这个时候我们需要对轮询过程进行加权,以调控每台服务器的负载。经过加权后,每台服务器能够得到的请求数比例,接近或等于他们的权重比。比如服务器 A、B、C 权重比为 5:2:1。那么在8次请求中,服务器 A 将收到其中的5次请求,服务器 B 会收到其中的2次请求,服务器 C 则收到其中的1次请求。

源代码如下,说白了就是根据mod值和权重选择.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
// key = 全限定类名 + "." + 方法名,比如 com.xxx.DemoService.sayHello
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
int length = invokers.size();
int maxWeight = 0; // 最大权重
int minWeight = Integer.MAX_VALUE; // 最小权重
final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
// 权重总和
int weightSum = 0;
// 下面这个循环主要用于查找最大和最小权重,计算权重总和等
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
// 获取最大和最小权重
maxWeight = Math.max(maxWeight, weight);
minWeight = Math.min(minWeight, weight);
if (weight > 0) {
// 将 weight 封装到 IntegerWrapper 中.key = invoker,value = 权重
invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
// 累加权重
weightSum += weight;
}
}
// 查找 key 对应的对应 AtomicPositiveInteger 实例,为空则创建。
// 这里可以把 AtomicPositiveInteger 看成一个黑盒,大家只要知道
// AtomicPositiveInteger 用于记录服务的调用编号即可。
AtomicPositiveInteger sequence = sequences.get(key);
if (sequence == null) {
sequences.putIfAbsent(key, new AtomicPositiveInteger());
sequence = sequences.get(key);
}
// 获取当前的调用编号
int currentSequence = sequence.getAndIncrement();
// 如果最小权重小于最大权重,表明服务提供者之间的权重是不相等的
if (maxWeight > 0 && minWeight < maxWeight) {
// 使用调用编号对权重总和进行取余操作
int mod = currentSequence % weightSum;
// 进行 maxWeight 次遍历
for (int i = 0; i < maxWeight; i++) {
// 遍历 invokerToWeightMap
for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
// 获取 Invoker
final Invoker<T> k = each.getKey();
// 获取权重包装类 IntegerWrapper
final IntegerWrapper v = each.getValue();

// 如果 mod = 0,且权重大于0,此时返回相应的 Invoker
if (mod == 0 && v.getValue() > 0) {
return k;
}

// mod != 0,且权重大于0,此时对权重和 mod 分别进行自减操作
if (v.getValue() > 0) {
v.decrement();
mod--;
}
}
}
}

// 服务提供者之间的权重相等,此时通过轮询选择 Invoker
return invokers.get(currentSequence % length);
}

下面我们举例进行说明,假设我们有三台服务器 servers = [A, B, C],对应的权重为 weights = [2, 5, 1]。接下来对上面的逻辑进行简单的模拟。

mod = 0:满足条件,此时直接返回服务器 A

mod = 1:需要进行一次递减操作才能满足条件,此时返回服务器 B,[1,5,1]

mod = 2:需要进行两次递减操作才能满足条件,此时返回服务器 C,[1,4,1]

mod = 3:需要进行三次递减操作才能满足条件,经过递减后,服务器权重为 [1, 4, 0],此时返回服务器 A

mod = 4:需要进行四次递减操作才能满足条件,经过递减后,服务器权重为 [0, 4, 0],此时返回服务器 B

mod = 5:需要进行五次递减操作才能满足条件,经过递减后,服务器权重为 [0, 3, 0],此时返回服务器 B

mod = 6:需要进行六次递减操作才能满足条件,经过递减后,服务器权重为 [0, 2, 0],此时返回服务器 B

mod = 7:需要进行七次递减操作才能满足条件,经过递减后,服务器权重为 [0, 1, 0],此时返回服务器 B

经过8次调用后,我们得到的负载均衡结果为 [A, B, C, A, B, B, B, B],次数比 A:B:C = 2:5:1,等于权重比。当 sequence = 8 时,mod = 0,此时重头再来。从上面的模拟过程可以看出,当 mod >= 3 后,服务器 C 就不会被选中了,因为它的权重被减为0了。当 mod >= 4 后,服务器 A 的权重被减为0,此后 A 就不会再被选中。

缺点在于如果mod值非常大时,需要做出多次的循环才能将mod减成0.存在性能问题.

后面的版本中对这一部分进行了优化,具体参考官方文档的解释:https://dubbo.incubator.apache.org/zh-cn/docs/source_code_guide/loadbalance.html

CATALOG
  1. 1. AbstractLoadBalance
  2. 2. RandomLoadBalance
  3. 3. LeastActiveLoadBalance
  4. 4. ConsistentHashLoadBalance
  5. 5. RoundRobinLoadBalance